

Journal of Alloys and Compounds 281 (1998) 202-205

Journal of ALLOYS AND COMPOUNDS

Polytypism in the Nb₃TeI₇ system

Mark D. Smith, Gordon J. Miller*

Department of Chemistry, Iowa State University Ames, Iowa 50011-3111, USA

Received 10 July 1998

Abstract

h-Nb₃TeI₇ represents the first polytype to be observed in a single ternary system of the layered Nb₃QX₇ family (Q=S, Se, Te; X=Cl, Br, I). This compound was synthesized by stoichiometric reaction of the elements at temperatures from 600° to 800°C, and was characterized by single crystal and powder X-ray diffraction. h-Nb₃TeI₇ crystallizes in the Nb₃SBr₇ structure type: space group P3m1, a=7.642(1) Å, c=6.897(1) Å and V=348.82(8) Å³. h-Nb₃TeI₇ differs from the previously reported polytype, hc-Nb₃TeI₇, by having a simpler anion layer stacking sequence involving fewer $^{2}_{\infty}$ [Nb₃TeI₇] layers per unit cell. Complete structural determinations of the new compound h-Nb₃TeI₇ as well as of the previously reported hc-Nb₃TeI₇ are included. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Niobium chalcogenide halides; Polytypism; Crystal structures

1. Introduction

The layered compound Nb₃TeI₇ was first reported in 1988 by Hönle et al., along with synthetic and crystallographic information for most other members of the family Nb_3QX_7 (Q=S, Se, Te; X=Cl, Br, I) [1]. This family of compounds is closely related to the binary halides Nb₃X₈ [2-4] by simple substitution of a chalcogen atom into the Nb_3X_8 halide matrix, over each Nb_3 cluster. The placement of the chalcogen, and the physical property ramifications of such a substitution have been thoroughly discussed [5]. In turn, both Nb_3X_8 and Nb_3QX_7 are structural derivatives of the CdI₂ type. The CdI₂ type can be considered the parent type of Nb3X8 and M3QX7, with the latter structures derived from CdI₂ by the introduction of metal-site vacancies, the presence of metal-metal bonding, and the substitution of a chalcogen for a halogen. All three are layered structures, consisting of close-packed anion layers interleaved by planes of metal atoms in every other layer. In the CdI₂ structure, all possible octahedral sites between every other anion layer are occupied, while in Nb_3X_8 and Nb_3QX_7 , the Nb atoms order in 3/4 of the octahedral sites between every other layer. The relationship of Nb_3X_8 and Nb_3QX_7 to that of CdI_2 can be illustrated by (conceptually) removing 1/4 of the interstitial metal atoms from the CdI₂ type and drawing the remaining occupied metal sites together into Nb₃ triangular

clusters. Nb₃QX₇ can therefore be formulated Nb₃ \Box_1 QX₇ (in the case of Nb₃X₈, Q=X). The fundamental metal cluster unit present in Nb₃X₈ and Nb₃QX₇ is the common M₃X₁₃ type [6], with the triangular cluster coordinated by one μ_3^i capping atom, three μ_2^i edge-bridging atoms, and nine atoms that provide connections between clusters to create their two-dimensional character.

The reported Nb₃TeI₇ structure is one of five layered structure types known in the Nb₃X₈/Nb₃QX₇ system [5] (a sixth type is formed by Ta₃SBr₇ [7]). These types differ only in the anion layer stacking sequence and relative positions of the metal cluster. Nb₃TeI₇ forms in the Nb₃SeI₇ structure type, space group P6₃mc. This non-centrosymmetric structure consists of an (...ABCB...) or (...hc...) anion layer stacking sequence, with alternating layers of pure iodide (the 'A' and 'C' layers) and mixed Te/I layers (the 'B' layers). The Nb₃ clusters are inserted between the AB and CB bilayers, such that they are always capped by the tellurium atoms. There are two $^{20}_{\infty}$ [Nb₃TeI₇] slabs per unit cell, with each successive slab related to the next by a 6₃ screw axis.

Many compounds adopting the CdI_2 structure type are well-known to form polytypes based upon different anion sheet stacking sequences. Therefore, Nb_3QX_7 might also be expected to show polytypism, but up to now this has not been observed. During the course of a study designed to search for such polytypism, we discovered a stacking variant in the Nb_3TeI_7 system. Herein we report the synthesis and structural characterization of this first poly-

^{*}Corresponding author.

Table 1 Identification of products from Nb_3TeI_7 reactions at various temperatures

Temp. (°C)	Products	Sample info.
350	hc-Nb ₃ TeI ₇ +unreacted intermediates	Powder only
400	$hc-Nb_{3}TeI_{7}$	Powder, few crystals
500	hc-Nb ₃ TeI ₇	Powder and crystals
600	$h-Nb_{3}TeI_{7}$ (minor) + $hc-Nb_{3}TeI_{7}$	Several crystals
650	$h-Nb_{3}TeI_{7}+hc-Nb_{3}TeI_{7}$	Crystalline pieces
700	$h-Nb_{3}TeI_{7}+hc-Nb_{3}TeI_{7}+Nb_{3}I_{8}$	Crystals
800	$h-Nb_{3}TeI_{7}+hc-Nb_{3}TeI_{7}$	Crystals
900	No Nb ₃ TeI ₇ phases. Nb ₃ Te ₄ + unknowns	Powder
1025	No Nb ₃ TeI ₇ phases. Nb ₃ Te ₄ + unknowns	Powder

type in the Nb₃QX₇ system. Note: because of the (...hc...) anion layer stacking sequence of the reported Nb₃TeI₇ variant [1], and to distinguish this compound from the new polytype reported here, the Nb₃TeI₇ structure reported earlier (space group P6₃mc) will henceforth be referred to as hc-Nb₃TeI₇, and the new stacking variant reported below will be labeled h-Nb₃TeI₇, in reference to its anion stacking pattern.

2. Experimental

The new polytype h-Nb₃TeI₇ was discovered from a study involving a series of reactions of the elements in the ratio 3Nb:Te:7I at nine temperatures ranging from 350°C to 1025°C. Reagents used were: Nb foil (Aesar, 99.995%, washed with a HF/HNO₃/H₂SO₄ solution to remove surface impurities, then rinsed with ethanol and dried in vacuo before use); Te (Alfa, 99.99%, thrice-sublimed); I₂ (Alfa, 99.95%, resublimed). All reactions were carried out in evacuated pyrex or fused silica tubes, and the products identified by powder (Guinier camera, Cu K α) and single-crystal X-ray diffraction. The temperatures used, and the products identified at each temperature are listed in Table 1.

3. Results and discussion

3.1. $hc-Nb_3TeI_7$

A complete structure determination of hc-Nb₃TeI₇ has never been reported, only the structure assignment and lattice constants [1]. Crystals of hc-Nb₃TeI₇ were proliferate in the various Nb₃TeI₇ reactions carried out as part of this study, therefore a full structure determination is now given. Intensity data from a hexagonal prism selected from a 600°C reaction were collected on a Siemens P4 diffractometer equipped with Mo K α radiation. After correcting the 1488 collected reflections ($2\theta_{max} = 60^\circ$) for absorption (psi-scans), the structure was easily solved by direct methods [8] using Nb₃SeI₇ as a structural model, and refined with SHELXL-93 [9]. Further crystallographic information is listed in Table 2. Atomic coordinates and isotropic displacement parameters are given in Table 3. Further details of the structure will be discussed in reference to $h-Nb_3TeI_7$.

3.2. $h-Nb_3TeI_7$

The new polytype h-Nb₃TeI₇ was first observed from a stoichiometric mixture of the elements heated at 700°C. This tube contained crystals of two visually dissimilar

Table 2 Summary of crystallographic data for *hc*-Nb₃Tel₇

	5 1
Formula weight	1294.63
Crystal system	Hexagonal
Space group	P6 ₃ mc (No. 186)
Color of crystal	Black
Dimensions of crystal (mm)	$0.15 \times 0.15 \times 0.30$
Lattice parameters (Å)	
a	7.6300(10)
С	13.800(3)
Vol. (\AA^3)	695.8(2)
Ζ	2
$d_{\rm calc} (\rm g \ \rm cm^{-3})$	6.180
Diffractometer	Siemens P4
Radiation	Mo Kα (λ=0.71073 Å)
Linear absorption coefficient	19.967 mm^{-1}
Transmission range, max/min.	0.741/0.344
Temperature of data collection	23°C
Scan method	ω scan
Scan speed	Variable: 3 to 60° /min in ω
hkl ranges	$-10 \le h \le 1$
	$-1 \le k \le 10$
	$-1 \le l \le 12$
$2\theta_{\text{max}}$ (deg)	60.00
Number refl. measured	1488
No. unique, observed ($F_0 \ge 4\sigma(F_0)$)	283
Weighting scheme	$w^{-1} = \sigma^2(F_0^2) + 0.0399F_c^2$
No. parameters refined	25
Residuals ^a	
$F_{o} \ge 4\sigma(F_{o})$	R1 = 0.0520; wR2 = 0.0959
All data	R1=0.0799; wR2=0.1065
GoF, all data ^b	1.071
Largest difference peak, $e^{-}/Å^{3}$	2.501
Largest difference hole, $e^{-}/Å^{3}$	-2.789

^aR1= $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; wR2=[$\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]$]^{1/2}. ^bGoF=S=[$\Sigma [w(F_o^2 - F_c^2)^2] / (n-p)^{1/2}$, where *n*=no. of reflections, *p*= total no. of parameters refined.

Table 3 Positional parameters and isotropic displacement parameters for hc-Nb₃TeI₇

Atom	x	у	Z	$U_{ m eq}$
Nb	0.8667(2)	-x	1/4 (fixed)	0.0112(7)
Те	0	0	0.1022(5)	0.0122(11)
I1	2/3	1/3	0.3563(6)	0.0142(13)
I2	0.1694(2)	-x	0.3814(4)	0.0128(6)
I3	0.4979(2)	-x	0.1375(5)	0.0147(6)

morphologies. The majority of the crystals were hexagonal prisms. However, many crystals from this tube had a trigonal, or triangular prismatic morphology. The Guinier pattern of samples of these crystals clearly differed from the pattern of the known phase hc-Nb₃TeI₇, most diagnostically by the absence of one intense diffraction line. Guinier powder patterns for Cu K α X-radiation calculated from single-crystal solutions of hc-Nb₃TeI₇ and h-Nb₃TeI₇ are compared in Fig. 1.

3.3. Structures of $h-Nb_3TeI_7$ and $hc-Nb_3TeI_7$

Triangular prismatic shaped crystals of h-Nb₃TeI₇ were eventually located from reactions at 600°, 650°, and 700°C. A crystal from the 650°C reaction tube was selected, mounted in a glass capillary under argon, and aligned on a Siemens P4 diffractometer. The initial unit cell was determined on the basis of several reflections located with the aid of a rotation photograph. Axial photographs confirmed the cell edge lengths, and subsequently the unit cell was refined using 40 reflections from 6°≤20≤25°. h-Nb₃TeI₇ forms in the trigonal system, Laue symmetry 3m1, with a=7.642(1) Å, c=6.897(1) Å, and V=348.82(8) Å³. A total of 694 reflections were collected to $2\theta_{max}=50^\circ$, of which 316 were observed. Psi-scans of

Fig. 1. Comparison of the powder diffraction patterns of hc-Nb₃TeI₇ (upper) and h-Nb₃TeI₇ (lower). The intense line at $2\theta \approx 33.4^{\circ}$ in the hc-Nb₃TeI₇ pattern is the 203 reflection.

Table 4						
Summary	of	crystallographic	data	for	h-Nb.TeL	

Summary of crystanographic data for n	-IND ₃ 1 eI ₇
Formula weight	1294.63
Crystal system	Trigonal
Space group	P3m1 (No. 164)
Color of crystal	Black
Dimensions of crystal (mm)	$0.1 \times 0.1 \times 0.2$
Lattice parameters (Å)	
a	7.642(1)
С	6.897(1)
Vol. (\AA^3)	348.82(8)
Z	1
$d_{\rm calc} \ ({\rm g \ cm}^{-3})$	6.163
Diffractometer	Siemens P4
Radiation	Mo Kα (λ=0.71073 Å)
Linear absorption coefficient	19.913 mm^{-1}
Transmission range, max/min.	0.922/0.815
Temperature of data collection	23°C
Scan method	ω scan
Scan speed	Variable; 2 to $45^{\circ}/\text{min}$ in ω
hkl ranges	$-9 \le h \le 1$
	$-1 \le k \le 9$
	$-1 \le l \le 8$
$2\theta_{\rm max}$ (deg)	50.00
Number refl. measured	694
No. unique, observed $(F_0 \ge 4\sigma(F_0))$	316
Weighting scheme	$w^{-1} = \sigma^2(F_o^2) + 0.0317F_c^2$
No. parameters refined	25
Residuals ^a	
$F_o \ge 4\sigma(F_o)$	R1 = 0.0264; wR2 = 0.0588
All data	R1 = 0.0268; wR2 = 0.0590
GoF, all data ^b	1.211
Largest difference peak, $e^{-}/Å^{3}$	1.26
Largest difference hole, $e^{-}/Å^{3}$	-3.183

^aR1 = $\Sigma ||F_o| - |F_c| / \Sigma |F_o|$; wR2 = $[\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$.

^bGoF=S=[Σ [w(F_o²-F_c²)²]/(*n*-*p*)^{1/2}, where *n*=no. of reflections, *p*= total no. of parameters refined.

several reflections for an empirical absorption correction were collected, and later applied to the data. The structure was easily solved by direct methods using SHELXS-86 [8], and refined with SHELXL-93 [9]. Table 4 summarizes other relevant crystallographic data. Atomic coordinates and isotropic displacement parameters are given in Table 5. (A complete listing of all crystallographic data for hc-Nb₃TeI₇ and for h-Nb₃TeI₇, from both single crystal and powder diffraction data, may be obtained from the authors.)

h-Nb₃TeI₇ is the first example of polytypism discovered in the M₃QX₇ system. h-Nb₃TeI₇ forms in the Nb₃SBr₇ structure type [1,6], space group P3m1, with one Nb₃TeI₇ slab per unit cell. The anion layer stacking sequence is

Table 5					
Atomic coordinates a	nd isotropic	displacement	parameters t	for <i>h</i> -N	b ₃ TeI ₇

Atom	x	у	z	$U_{ m eq}$
Nb	0.86658(9)	-x	1/2 (fixed)	0.0095(3)
Те	0	0	0.2015(4)	0.0104(4)
I1	2/3	1/3	0.7129(3)	0.0115(4)
I2	0.16938(8)	-x	0.7637(3)	0.0121(3)
13	0.49855(7)	-x	0.2747(3)	0.0135(3)

Fig. 2. Near-[100] (upper) and [001] (lower) views of the hc-Nb₃TeI₇ (left column) and h-Nb₃TeI₇ (right column) structures. In all views, two ${}^{2}_{\infty}$ [Nb₃TeI₇] layers and unit cells are shown. Small black circles, Nb; grey circles, Te; open circles, I.

hexagonally close-packed (... ABAB...), or (... h...), from which derives the nomenclatural choice. The 'A' layers are composed of pure I, and the 'B' layers of mixed Te/I. Unlike hc-Nb₃TeI₇, where each successive ${}_{\infty}^{2}$ [Nb₃TeI₇] layer is related to the next by a 6₃ screw axis, in h-Nb₃TeI₇ successive layers are directly 'superimposed' on top of one another. Near-[100] and [001] views of these two structure types are shown in Fig. 2. Bond distances and angles for h-Nb₃TeI₇ are listed in Table 6, and, as expected, are quite similar to those in hc-Nb₃TeI₇, also in Table 6.

It is tempting to speculate on the effect of temperature on the distribution of the two Nb₃TeI₇ polytypes, since a dependence on temperature is observed (Table 1). To wit, h-Nb₃TeI₇ seems to be favored at higher temperatures, as it was not observed at temperatures below 600°C. A question of how to assign relative abundances of the two

Table 6 Selected bond distances (Å) in h- and hc-Nb₃Tel₇

	5 1		
Bond	$h-Nb_{3}TeI_{7}$	hc-Nb ₃ TeI ₇	
Nb–Nb	3.059(2)	3.052(5)	
Nb-Te	2.713(2)	2.695(6)	
Nb–I1 (μ_3^a -I)	3.0262(15)	3.023(5)	
Nb–I2 $(\mu_2^i - I)$	2.737(2)	2.731(4)	
Nb–I3 ($\mu_2^{\tilde{a}}$ -I)	2.9122(12)	2.911(4)	

polytypes in these mixtures is apt. Visual estimates are clearly dubious, since the phases often form as large, solid silver plugs whose morphology is not evident, and because taking powder patterns of every bit of material in the tube is impractical. A more sinister complication is how to determine if bulk samples of hc-Nb₃TeI₇ contain any $h-Nb_3TeI_7$. Because the simpler $h-Nb_3TeI_7$ pattern is virtually identical to the hc-Nb₃TeI₇ pattern except for the absence of a particular line (the 203 reflection in the hc-Nb₃TeI₇ pattern, see Fig. 1), hc-Nb₃TeI₇ can always be conclusively identified, whereas $h-Nb_3TeI_7$ cannot. If the $h-Nb_{3}TeI_{7}$ pattern is superimposed onto the $hc-Nb_{3}TeI_{7}$ pattern, it will be undetectable. In order to minimize this problem, small single crystal samples were used whenever possible, but because of their small size, often several crystals or larger samples less likely to be homogeneous were used. Because of this problem, estimates of which phases form at which temperatures are probably skewed in favor of hc-Nb₃TeI₇.

Acknowledgements

This work was supported partially by the Donors to the Petroleum Research Fund, administered by the American Chemical Society, and by the National Science Foundation (DMR-96-27161). We thank Robert Jacobson for use of the diffractometer.

References

- W. Hönle, S. Furuseth, G.J. Miller, H.-G. von Schnering, 9th International Conference on Solid Compounds of Transition Elements, Abstracts, Royal Society of Chemistry, London, 1988.
- [2] H.-G. von Schnering, H. Wöhrle, H. Schäfer, Naturwissenschaften 48 (1961) 159.
- [3] S.S. Berdonosov, A.V. Lapitskii, Russ. J. Inorg. Chem. 10 (1965) 2812.
- [4] A. Simon, H.-G. von Schnering, J. Less-Common Metals 11 (1966) 31.
- [5] G.J. Miller, J. Alloys Comp. 217 (1995) 5.
- [6] G.V. Khvorykh, A.V. Shevelkov, V.A. Dolgikh, B.A. Popovkin, J. Solid State Chem. 120 (1995) 311.
- [7] M.D. Smith, G.J. Miller, J. Solid State Chem., in press.
- [8] G.M. Sheldrick, 'SHELXS-86', Univ. Göttingen, Germany, 1986.
- [9] G.M. Sheldrick, 'SHELXL93 Program for the Refinement of Crystal Structures', Univ. Göttingen, Germany, 1993.